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Interaction of a phase front and a defect 
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Research Institute of Physics, Rostov University. Rostov-on-Don 344104, Russia 
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Abstract The interaction of phase fmnk and twin boundades are abed in NaN303 and 
PbHfOr single crystals. It is manifest by the stopping of aphase front by a hvin b o u n w .  as 
well as by their joint movement. A phase front stopped by an immovable defect of anarbitrary 
mtun is described and expressions for the force of interaction elween the defect and phase 
froit and 'for the velocity of their joint movement are obtained. It is shown that (independently 
of the concrefe defect and phase front structure) these values are determined by the difference 
between the free energies of the phases. The exact solution describing a phase h n l  stopped on 
a n m w  coherent twin boundary is obtained. It is shown that this solution exists in the whole 
region of the crystal phase diagram. 

1. Introduction 

Real crystals always have some defects: dislocations, dislkation walls and clusters, 
microcracks, inclusions and so on. Even a perfect single crystal always has  at^ least one 
dislocation of gowth. These defects play.an important role in the phase transition (PT) 
process. 

In crystals undergoing several structural PTS a twin structure arises during a PT at a high 
temperature.. ~ n i n  boundaries (TBS), are defects which also play an important role if other 
PTS at low temperatures take place. 

In this paper the interaction of a phasefront (FF) and adefect is studied. The interaction 
is manifest by the stoppageof a FF in~the vicinity of a def&t,as well as by &ring a defect 
off from locking devices and by the joint motion of a defect :together with a FF. These 
phenomena will be called 'capture phenomena'. 

It is proved theoretically that these phenomena are universal. The interaction force of 
a defect and a & and the'velocity of their joint motion are shown to be independent of the 
specific interaction mechanism (and thus of the details of the defect and FF structures) and 
to depend on only the difference between the free energies of the phases. 

A TB is considered as a particular example of a defect which takes part in the interaction 
with a PF. The exact solution describing a PF stopped at a TB is obtained within the example 
of a PT in a crystal containing a coherent TB. 

However, it is 'necessary to obtain experimental observations of these phenomena to 
confirm their existence. Direct observations of capture phenomena on ms in NaNb03 and 
PbHIQ single crystals are reported here. 

2. Observations of capture phenomena 

The crystals used for the experimental investigation were plate-like and isometric NaNb& 
and PbHfO3 which are antiferroelectrics with sets of PTS of first order and of different 
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natures: 

Pm3m 4 P4 fmbm + Ccmm + Pnmm + Pmnm + Pbma 2 R3c 

in NaNb03. Also the ferroelectric phases R3c and P21ma can be induced in NaNb03 by 
an electric field [ I ,  21. The transitions 

913 K 848 K 793 K 755 K 643 K 170 K 

240 K 

413 K 440K Pm3m -+ P2221 4 Pba2 

take place in PbHfO3 [3]. The experimental details and the descriptions of different phases, 
PFs and TBs observed in these crystals have been reported elsewhere I2-41. 

In NaNb03 crystals a pr can both be followed by twin-structure reconstruction and take 
place without reconstruction of the twin structure. In the first case the capture of the m 
by the PF was observed, the TB being moved in the crystal in the vicinity of the PF in the 
direction of its motion. 

Capture of the PF by the TB was also observed. In this case the PF was coming towards 
the TB and was stopped in its vicinity (at an invariable electric field value in the case of the 
induced pT and at a constant temperature value for the temperature pr). If the electric field 
was increased again (or the temperature was changed), the PF was observed to be tom off 
the m and to continue its motion in the crystal. 

The capture phenomena of the TBs (110) and (lkl)  were observed under the transition 
Pbma + R3cand of the" [loo), (110) and (IklJunderthetransitions Pbma + P2lma 
and Pbma + Pmnm. The fragments of the pTs Pbma + P2tma and Pbma + Pmnm 
with the capture phenomena in NaNb03 are displayed in figures 1 and 2. 

Figure 1. Micrographs of a NaNbOj crystal undergoing the PI Pbma + P l l m o ,  induced by 
an external electric field. (a) The TB ( I L L )  in the phase Pbma. (b )  The joint movement of the 
TB and the PF (the diredim of movement is indicated by arrows). 

In the plate-like PbHfO, crystals the first-order pr between the paraelectric cubic phase 
Pm3m and the orthorhombic antiferroelectric phase P2221 was investigated. 

Several types of 90" and 60" flat and zigzag TBs were observed in the P2221 phase of 
PbHfO, crystals [4]; however, only flat 60" TBs which are situated along the (110) plane 
of the pseudocubic cell took part in the interaction with the PF. 

The capture of a TB was observed only if the region of the low-symmetry phase was 
twinned and had one or several 60" ms which made an acute angle with a pF. 
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Figure 2. Photographs of the fragments of the m Pmnm -+ Phmn in a NaNhO, crystal. 
(0 )  The twinned phase Pmnm and the PF o f  the Pbma phase (at the bottom of  the picture). (b) .  
( c )  Movement of the TB under the PF action. The TB is tilted with respect to the picture plane 
(to the crystal edge) and can be Seen as the set of parallel diffuse interference bands (indicated 
by arrows). The TB displacement can be measured from the defects which can be seen on the 
photographs. 

The set of micrographs showing the PT Pm3m -+ P 2221 in PbHfOz, which is followed 
by the capture of a 60" TB [ 110) by the PF, situated along the plane (520) of the pseudocubic 
cell, is displayed in figure 3. This PF is the zero net strain plane [3 ] .  

The 60" TB (indicated by an arrow in figure 3(a))  divides the orthorhombic phase region 
into two parts (I and 11) with different constrasts and intersects the PF. With decreasing 
temperature the orthorhombic phase region increases, the intersection of the TB and the PF 
being moved to the left edge of the crystal (figures 3(b)<d)). After the intersection had 
arrived at the crystal edge, the TB tore itself off the PF and their joint motion was stopped. 
Note that small 60" wedges arise in the PT process in the vicinity of the intersection of the 
TB and the PF (figure 3(c)). This indicates the existence of mechanical stress in this region. 
The wedges disappear after the TB has been tom off the PF. 

The 90" TB of the orthorhombic phase does not influence capture phenomena. 
The observations reponed make it possible to see that the capture phenomena exist in 

different crystals for n s  of different natures. Thus it is reasonable to suppose that interaction 
between a PF and a TB has universal features. The universal features of this interaction are 
discussed here in the framework of the Landau theory of PTS. 

3. Theoretical description of capture phenomena 

Consider a crystal containing defects which experiences a PT of the first order on decreasing 
the temperature. Defects can either favour or resist the FT. When the crystals is supercooled, 
the PF jumps off defects of the first kind and moves inside the crystal until it reaches defects 
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Figure 3. The fragmcnls of the m PmJm + P2221 in a PhHfOl crystai: I. the phase P222,  
region with symmetric extinction: 11, region with parallel extinction. The m o w s  indicate the 
60” twin boundary (which i s  parallel to the ( I  101 plane of a pseudocubic cell) in (a )  and small 
60” wedges in (c). 

of another kind, which are able to take part in  the capture phenomena. These are defects 
increasing the ‘local temperature’ and defects of ‘local field’ type. The defects which often 
generate a low-temperature phase are crystal edges but they can also be generated by TBS 
[5-71, dislocations [9], cracks [lo] and so on. In this paper the PF which has jumped off 
the crystal edge is considered. 

Consider the interaction of a defect with a flat PF in the crystal which is supposed to have 
the form of a right-angled parallelepiped, the PF being perpendicular to the Ox direction. 

In the most general case the PT is described by the n-component order parameter (OP) 
~i ( i = 1 , 2  , . . . ,  n). 

The free energy has the form 

F = J  ( i g k ( V ~ i ) ’ + r ~ ( g i )  ) dV+Fint(O (1) 
i=l  

where g =- 0 is a constant and 

rP(qi) E Q ( T I .  ~ 2 9  . . . I qn) 

is the free energy density of the homogeneous crystal; rp(0) = 0. V is the crystal volume 
and &(e) is the part of the free energy describing the interaction with the defect which 
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depends on the defect coordinate f. The method for introducing the defect coordinate 
depends on the nature of the defect. Several examples will be considered later. In the most 
general case the interaction term can be written in the form 

Note that equation (2) is the most general form of the interaction of the OP and the defect 
of an arbitrary nature. If the defect is of 'the 'local temperame' type, in this case k = 2 and, if 
the defect is of the 'local field' type conjugated to all or to some OP components, in this case 
k = 1. In the general case this 'local field' acts&fferently on the different OP components; 
thus in a general case, U ,  # (I2 # . . i # U,. Here the functions Ui(x - f, y, z) describe 
the interaction of the OP and the defect. They appear as the result of the OP interaction with 
some other degrees of freedom which are not equal to zero in the vicinity of the defect (e.g. 
the strain field, other OPS, and distribution of point defects). 

Consider several examples of possible interaction of a defect and an OP field. 
The case of a PT in a crystal containing a wide coherent TB (domain wall) was considered 

in [8]. It was shown that the interaction term had the form . .  

f i n ,  - / V2COSh-2[(X . -6 ) / lTBIs& 

where ~ T B  is the TB width and S is the TB area. 
The nmow coherent TB model was considered to describe the nucleation on a TB during 

a FT into a superconducting phase [5] and during structural PTS [6,7]. In both cases the 
interaction term is 

fint =.A qZS(x)S& , s  
where A is the TB power and S ( x )  is the &function. This model can be obtained from the 
first model in the case ~ T B  << r,, where r, is the OP correlation radius [5,8]. Note that in 
both cases [5-81 at least two different OPs' were considered in the theory directly or the 
second OP was implied. The first OP is q. It describes the low-temperature pr. The other OP 
describes the high-temperature FT. If TBs appear in the crystal under the high-temperature 
FT, then the distribution of this OP is inhomogeneous [8]. The inhomogeneities in this OP 
distribution describing the TB give rise to the inhomogeneous term in the free energy [8]. 

Consider the case of an elastic defect (in other words the case of a defect which gives 
rise to the inhomogeneous elastic field uij(r), where uij(r) is the,strain tensor). In the case 
of a FT with multiplication of the elementary cell (except improper ferroelastics) there is 
only one striction term and the interaction part of the free energy should be written 

where A is the striction constant. 
In the case of improper ferroelastics (e.g. in the case of ferroelectrics) there can be 

several invariants of this kind in the free energy which are linear in u,,(r) and of the second 
order in q [I I]. Thus the case k = 2 occurs. 
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Finally in the case of ferroelastics the interaction term is linear in both the OP and the 

The particular strain field distribution has different forms for defects of different kinds. 
In the case of the edge dislocation stretched along Oz with the coordinates x = E ,  

strain tensor (the case k = 1). 

y = 0, the trace of the strain tensor has the form 

uii = [Wl - ? . W X ( l  - V)l[Y/((X - D2 + Y2)1 

where b is the Burgers vector and U is Poisson's ratio [12,13]. 

the trace of the strain tensor has the form 
In the case of a flat crack lying in the x-y plane with its tip at the point x = e,  y = 0 

uii = B cos(q/z)/ri/2 = B([ (x  - 5)' + Y ~ I - ' / ~  + [(x - 5)' + y 2 I -I  1 112 

B = 2&(1 - Z U ) ( l  + U)/(2X)"2E. 

where 

Here Kl is the stress intensity factor, E is Young's modulus, and r and q are the cylindrical 
coordinates measured from the crack tip [IO]. 

The incoherent TB is often considered as a wall of equidistant dislocations [13]. In the 
case of a dislocation wall which is parallel to the y-z plane with the coordinate x = 5 (the 
dislocations being parallel to the Oz axes) the strain tensor trace takes the form 

uti % exp(-klx - $'I/h)sin(ky/h) 

where h is the distance between the dislocations [13]. 
These expressions should be substituted into Knt in order to calculate the interaction 

energy for a defect of particular type. In the cases considered, the functions U, depend 
on only two coordinates (in the geometry considered, they are x and y). However, a 
dependence on three coordinates can also occur in the case of a more complicated defect. 

These examples show some particular realizations of inhomogeneities giving rise to the 
interaction term Knt. However, in this paper the general propeaies of capture phenomena 
are studied. They are independent of the specific structure of the defect. 

The condition of the potential (1) minimum results in the equation of state 

g(a2qi/ax2 + a 2 w y 2  + a2qi/az2) = a d a q ,  + kq;-iui(x - e ,  Y. Z) (3) 

and the boundary conditions on the crystal surface 

(n - Vq, = 0 (4) 

where n is the normal unit vector and V is the gradient operator. 

field to the defect: 
It is not difficult to see that the force f = -aF/ae acts in a general case from the OP 

The solution describing the PF stopped at the defect has the asymptotics 

V i  (-W. Y 9 Z) = @) Ili(+oo, Y 3 2) = 0 (6) 
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which are the additional boundary conditions. Here q!’) are the solutions of the equations 
of state ap/aq, = 0 in the corresponding homogeneous phase q = constant # 0. 

Nucleation on ‘local temperature’ type of defects can take place at a higher temperature 
than the FT temperature if the contnbution of the last term in (1) is negative. As a result, 
capture phenomena can take place in the opposite case for f > 0. Suppose that the PF is 
flat (the PF bending in the defect field can be neglected for PTS of first order) and that the 
OP distribution has the form of a step IJ = q(x -e,,); av/ax - q(’)S(x - &,)/lPF (where 

is the PF coordinate, and IPF is the PF width); then one can obtain an estimation for the 
condition for capture phenomena to occur: 

Obviously, in the case of a perfect crystal (one obtains~this case by taking Ui: = 0) the 
solution of equation (3) with the boundary conditions (4) and (6) exists only at the first- 
order FT point, because the asymptotics qi(-co, y) =.#) and q i ( t o 0 ,  y) = 0 correspond 
to different values of the first, integral of equation (3). The condition of equality of these 
first integrals gives the equation of a line in the phase diagram which is the line of the 
first-order PT. Thus a solution describing a motionless PF does not exist for a perfect crystal 
away from first-order PT line. On the other hand in the two-phase region of the phase 
diagram for the perfect crystal out of the first-order FT line a solution describing the moving 
phase front exists. 

However, in the case of a crystal containing a defect the solution with the asymptotics 
(4) and (6) can exist in some region in the phase diagram. 

over i .  Using the relations 
Equations (3) should be multiplied by aqi/ar, integrated over x and y and summed 

(aqi/ax)(azsi/az*) = (a/az)I(arl,/azjia,/ax)i - +(a/ax)(aqi/az)2 

(avi/aX)(aZtli/ay2) = (a/ay)rcalli/ay)carli/ax)~. - f(a/ax)(asi/ay)z 

and 

(an/ax)(a2vi/ax2) = +fa/ax)(awax)2 

one can see that the left-hand part of the equation becomes zero after integration because 
of the boundary conditions (4). Taking into account that 

(where L, and L, are the crystal sizes in the Oy and Oz directions, and S = L,LY is the 
crystal area of the cross section which is perpendicular to the Ox direction) using (5) one 
can finally obtain 

f = -p(?p)S. (7) 

(It should be noted that this result is obtained for arbitrary Ui functions. Thus it can be 
applied to defects of all types interacting with the OP, for which the capture condition is 
fulfilled.) 

The fulfilment of this condition is necessary but is not sufficient, however, for the 
existence of a solution of equations (3), (4) and (6). Thus it is necessary to show that such 
a solution can be obtained exactly at least in the framework of a simple model. 
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4. The exact solution of a phase front stopped at a narrow coherent twin hOMdarg 

The exact solution is obtained here in the pdcu la r  case of a simple model of a coherent 
narrow m. As is discussed above in the case of a narrow TB which is perpendicular to the 
Ox direction, the functions Cli can be taken in a form 

L E Bdyunis et uf 

& ( x - 5 , ~ , d = A 6 ( x - t )  

being the same for all i = 1.2, . . . , n. 
case, n = 1 and 

Consider the case of the first-order PT describing by a onecomponent OP q.  In this 

&l) = +a$+ $14+  ay,, (8) 

where U, p and y are the phenomenological constants, with y z 0, B c 0, a = a(T - TJ 
(U > 0). 

The equilibrium equation which follows from the minimum condition of the free energy 
has the form 

g(a2q/axz) = + pq3 + yq5 + kAqk-16(x -5 ) .  (9) 

The solution describing the PF stopped on the motionless TB must have the asymptotics 
q(-w) = qo, q(f00) = 0 and q'(k00) = 0 and must be continuous, but the derivative has 
a jump at the point x = e because of the singular term in equation (9). 

The exact solution has the form 

(10) 12a/[(9Bz - 4 8 ~ y ) ~ ' ~ c o s h [ " ~ / g ) ' ~ ~ ( ~  - f )  +ql+31B1] x 2 5 
x c t .  [qgbz sinhz(t + p)l/[qg + bZcoshz(t + p)1 

v 2 =  [ 
where 

d = [-B + (B2 - 4aY)'/z1/2Y 
bz = [B + ZVZ - 4 a ~ ) " ~ l / Z ~  

t = qo[4V2 - by)/2gz]'/4(X - 5 )  

The constants p and q should be determined from the conditions on the TB (see appendix). 
These conditions give the system of the transcendental algebraic equations for p and q. It 
is important to show that they have a solution in some region of the phase diagram. If the 
existence of this solution is proved and the region of its existence is found, then it is the 
phase diagram region w h m  a capture phenomenon can take place. The p -  and q-values in 
this region can be found approximately. 

The solution (10) can obviously exist only in the two-phase region of a phase diagram: 
between the lies a = SZ/4y (figure 4, line 1) and the line a = 0. However, the solutions 
for p and q (appendix) exist in a smaller part of the phase diagram, which is displayed in 
figure 4 on the background of the phase diagram of the potential (8). It is situated between 
lines 3 and 4 (figure 4). given by the expressions 

2&Ay(gl@13)-'/z = 2m&+ K (11) 
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Wgure 4. The region of existence of the solution (10) (shaded) on the background of the phase 
diagram of the potential (8): line 1, the line U = p2j4y, the hvo-phase region boundary; l i e  
2. the line n = 3B2/16y. the first-xder PT line; Line 3. line given by (11); line 4, l i e  given 
by (12). the boundaries of the region of existence of the solution (IO). (a) The solution (10). 
descnbig the phase fmnt, stopped at tk m. 

and 

2&Ay(g1f113)-1/2 = 2 m h -  K (12) 

respectively. Here K = (2m3 - 3m2 + 1)’” and m = (1 - 4ay/f12)1/2. 
Line 3 (figure 4) intersects the line a = 0, the line a = 3flz/16y (the line of the first- 

order PT; figure 4, line 2) and the l i e  a = flZ/4y at the points TI, TZ and 5, respectively 
(figure 4). The coordinates of these points are 

I f l : l =  6 A Z y Z / g  1,921 = 12AZy2/g l&l= Z4A2yZ/g. (13) 

Line 4 (figure 4) intersects line a = 0 at the point TI and for p -+ -co coincides with 
line 2. Thus a region in the phase diagram exists in which the solution (10) of equation (9) 
OCCUTS. 

In the cases of other, more complicated models of TBs, one can hardly hope to obtain 
the analytic solution of equation of state describing the stopped PF, but the exact result 
obtained in the framework of this sample model makes it possible to expect that solutions 
of the same type take place in a general case. 

5. Joint motion of the twin boundary and phase front 

If the pressure U of the force f (U = f / S )  is more than U* (the maximum value of the 
pressure due to the interaction of a TB with locking devices or due to the Peierls force), the 
TB can be moved by the PP. 
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The dissipative function for the case of an n-component OP has the form 

The equation of motion of the OP resulting from (I), (2) and (14) is 

K(aqi/at) = g(a2qi/ax2 + a2qi/ay2+ a2qi/az2) - ap/aqi - k$-'ui(x - 6, Y, Z) (15) 

where t is the time and 6 = .$(t). The solution should be tried in the form q = 
q(x - .$(t), y. z). Substituting this expression into (15). multiplying by aqi/ax, summing 
over i and integrating over x, y and z as was done before, one can obtain the equation for 
F ( 0 :  

KJ(at/at) = -&@) - 0; (16) 

for lq(qFo)) I - 0; =- 0. In the case T c G, one can obtain p(q0) c 0 and thus f > 0. (To is 
the temperature of the first-order m. In the case of the PT described by the potential (8) the 
pT takes place on the line (Y = 3p2/16y of the phase diagram; thus TO = Tc + 3BZ/16ya.) 
H a  

and the value of the integral J can be estimated as J - ~ ( q ~ o ) ) z / l ~ .  
Note that the results (7) and (16) are universal, they do not depend on the concrete 

mechanism of the interaction of TB and the OP and on the structure of the fiee energy (1) 
(the polynomial (8) power, the number of components for the OP and so on). However, the 
form of the exact solution (IO) of the equation of state (9) and the region of existence of 
this solution are determined by the potential structure (1) and (8). 

The maximum value of the pressure U can be obtained on the edge of the two-phase 
region of the phase diagam. In the case of the transition described by the potential (1) and 
(8) it occurs at 01 = 0 hence it follows that dman = IBI3/12y2. 

At ct c 0 the solution (10) does not exist. Thus for supercooling 01 c 0, the PF is tom 
off the TB and the whole crystal becomes a low-symmetry phase. 

The condition lp(qio))l Ip(Z)I = 0; gives the temperature Ti at which the PF tears 
the TB off the locking devices. At the small value T - f i  c 0 the velocity of the joint 
movement of the PF and the TB has the form 

a t f a t  = s(Z - T)/KJ (18) 

where the transition entropy density s = -ap/aT. In the case described by the potential 
(8), s = aqi/2. 

The values of the constants of the potentials which describe the transitions in NaNbO3 
and PbHfOa are unknown. However, one can estimate the values of U and ap/at using the 
experimental data for some ferroelectrics [14]. One can obtain U- - 16-104 Pa [14]. 
Using the values a - IO5 J m s Cn2 K-' [141, I - IO-'' m, K - 10-5-10-6 J m s C-' 
(which corresponds to a relaxation time of about 10-lo-lO-ll s), one can obtain S/KJ * 
1-10 m s-l K-'. 
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Appendix. The solution of equation (9) 

After the transformations 

x - = z(gY)'/z/IBI = @/Y tl = @ ( z ) ( l B l / ~ ) " ~  

equation (9) for the case k = 1 is reduced to the form 

a28/az2 = u8 - 83 f8' + DS(z) (AI) 

where D = A~(Sl /31~)- ' f l .  The solution of equation (AI) must be continuous with a jump 
of 8'(0). Integrating equation (AI) over z from -E  to E and taking the Limit E -+ 0, one 
can obtain the conditions which must be fulfilled at the point z = 0 

8'(+O) - e'(-0) = D. (-42) 

The continuity condition has the form 

8(+0) = 8(-0). (-43) 

The expression for the force f, obtained with the help of (3, is 

(AS/2~)(1/31~/g)~'*18'(+0 + 8'(-0)l = f. (A4) 

Equations (AIHA4) together with equation (7) for the force are the complete system 
which makes it possible to obtain the solution with the asymptotics (4) and (6). Equation 
(AI) is conservative everywhere except for at the point z = 0. Thus the first integrals exis$ 
one of them is equal to zero and corresponds to the first expression in equation (10). and 
the second, which is equal to -@(eo), corresponds to the second expression in equation 
(IO). Here q(q)  = Ip3@(8)/y2. These two expressions must satisfy equations (A2HA4) 
and (7) at the point z = 0. They can be reduced to 

6"(+0) = @(t'o)/D + 4D 

6"(-0) = @(80)/D - 4D 

where 6'; = +[I + (1 - 4 ~ ) ' / ~ ] .  Equation (A5) is the system of transcendental equations 
which makes it possible to obtain the values of the constants p and q for the solution (10). 
The left-hand parts of both equations (As) are limited; thus the condition of existence of 
the solution of (As) for p and q is 

I[8'(*0)llm, 2 @(Oo)/D k 1D. (A61 

The inequalities (A6) give the region of existence of the solution (IO) in the phase diagram. 
The boundaries of this region are given by (11) and (12). In this region the solution exists 
and the values of p and q can be obtained approximately. 
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