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Abstract. The interaction of phase fronfs and twin boundaries are observed in NalNbQs and

- PbHfOy single crystals. It is manifest by the stopping of a phase front by a twin boundary, as

~ well as by their joint movemment. A phase front stopped by an immovable defect of an arbitrary
nature is described and expressions for the force of interaction between the defect and phase
front and Tor the velocity of their joint movement are obtained. It is shown that (independently
of the concrete defect and phase front structure) these values are determined by the difference
between the free energies of the phasés. The exact solution describing a phase front stopped on
a narrow coherent twin boundary is obtained, It s shown that this solution exists in the whole
region of the  crystal phase diagram.

1. Introducﬁon

Real crystals always have some defects: dislocations, dislocation walls and 'clusters,
microcracks, inclusions and so on. Even a perfect single crystal always has at least one
dislocation of growth These defects play an important role in the phase transition (PT)
process.

In crystals undergomg several stfuctural PTs a twin structure arises dunng aPT at a high
temperature.. Twin boundaries (TBs)- are defects which also play an important role if other
- PTs at low temperatures take place. ‘

In this paper the interaction of a phase front (PF) and a defect is studied. 'Ihe interaction.
is manifest by the stoppage of a PF in the vicinity of a defect as well as by teanng a defect
off from locking devices ‘and by the joint motion of a defect together w1th a PF. These
phenomena will be called ‘capture phenomena’.

It is proved theoretically that these phenomena are umversal The mteractlon force of

“a defect and a PF and the velocity of their joint motion are shown to be independent of the
specific interaction mechanism (and thus of the details of the defect and PF structures) and
- to depend on only the difference between the free energies of the phases.

* _A'TB is considered as a particular example of a defect which takes part in the interaction
with a PF. Thc exact solution describing a PF stopped at a TB is obtained w1thm the example
of a PT in a crystal containing a coherent TB.

‘However, it is necessary to obtain experimental observauons of thesc phenomena to

" confirm their existence. Direct observations of captm'c phenomena on TBs in NaNhO3 and
PbH{fO; smgIe crystals are reported here

- 2. Observations of capture phenomena -

‘The crystals used for the experimental inveéﬁgation were plate-like and isometric NaNbQO;
and PbHfO; which are antiferroelectrics with sets of PTs of first order and of different -
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natures:
913 K 848 K 793 K 755 K 643 K 170 K
Pm3m — P4/mbm — Ccmm — Pnmm — Pmnm — Pbma = R3c
240 K

in NaNbO;. Also the ferroelectric phases R3¢ and P2;ma can be induced in NaNbO; by
an electric field [1, 2]. The transitions

Pm3m mx P222, uox Pba?

take place in PbHfO;3; [3]. The experimental details and the descriptions of different phases,
PFs and TBs observed in these crystals have been reported elsewhere [2-4].

In NaNbO; crystals a PT can both be followed by twin-structure reconstruction and take
place without reconstruction of the twin structure. In the first case the capture of the TB
by the PF was observed, the TB being moved in the crystal in the vicinity of the PF in the
direction of its motion.

Capture of the PF by the TB was also observed. In this case the PF was coming towards
the TB and was stopped in its vicinity (at an invariable electric field value in the case of the
induced PT and at a constant temperature value for the temperature PT). If the electric field
was increased again (or the temperature was changed), the PF was observed to be torn off
the TB and to continue its motion in the crystal.

The capture phenomena of the TBs {110} and {1k1} were observed under the transition
Pbma — R3c and of the TBs {100}, {110} and {1k1} under the transitions Pbma — P2;ma
and Pbma — Pmnm. The fragments of the PTs Pbma — P2yma and Pbma — Pmnm
with the capture phenomena in NaNbQOj are displayed in figures 1 and 2.

b am

Figure 1. Micrographs of a NaNbO; crystal undergoing the PT Pbma — P2 ma, induced by
an external electric field. (a) The T8 {1k1} in the phase Pbma. (&) The joint movement of the
TB and the PF (the direction of movement is indicated by arrows).

In the plate-like PbHfO; crystals the first-order PT between the paraelectric cubic phase
Prm3m and the orthorhombic antiferroelectric phase P222; was investigated.

Several types of 90° and 60° flat and zigzag TBs were observed in the P222, phase of
PbHfO; crystals [4]; however, only flat 60° TBs which are situated along the {110} plane
of the pseudocubic cell took part in the interaction with the PF.

The capture of a TB was observed only if the region of the low-symmetry phase was
twinned and had one or several 60° TBs which made an acute angle with a PF.
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(¢)

Figure 2. Photographs of the fragments of the PT Pmnm — Pbma in a NaNbQ; crystal.
(a) The twinned phase Pmnm and the PF of the Pbma phase (at the bottom of the picture). (b),
{c) Movement of the T8 under the pF action. The 1B is tilted with respect to the picture plane
(to the crystal edge) and can be seen as the set of parallel diffuse interference bands (indicated
by arrows). The TB displacement can be measured from the defects which can be seen on the
photographs.

The set of micrographs showing the PT Pm3m — P222, in PbHfOj3, which is followed
by the capture of a 60° TB {110} by the PF, situated along the plane {520} of the pseudocubic
cell, is displayed in figure 3. This PF is the zero net strain plane [3].

The 60° TB (indicated by an arrow in figure 3(a)) divides the orthorhombic phase region
into two parts (I and II) with different constrasts and intersects the PF. With decreasing
temperature the orthorhombic phase region increases, the intersection of the TB and the PF
being moved to the left edge of the crystal (figures 3(b)—(d)). After the intersection had
arrived at the crystal edge, the TB tore itself off the PF and their joint motion was stopped.
Note that small 60° wedges arise in the PT process in the vicinity of the intersection of the
TB and the PF (figure 3(c)). This indicates the existence of mechanical stress in this region.
The wedges disappear after the TB has been torn off the PF.

The 90° TB of the orthorhombic phase does not influence capture phenomena.

The observations reported make it possible to see that the capture phenomena exist in
different crystals for PTs of different natures. Thus it is reasonable to suppose that interaction
between a PF and a TB has universal features. The universal features of this interaction are
discussed here in the framework of the Landau theory of PTs.

3. Theoretical description of capture phenomena
Consider a crystal containing defects which experiences a PT of the first order on decreasing

the temperature. Defects can either favour or resist the PT. When the crystals is supercooled,
the PF jumps off defects of the first kind and moves inside the crystal until it reaches defects
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Figure 3. The fragments of the PT Pm3m — P222) in a PbHfO3 crystal: I, the phase P222
region with symmetric extinction; II, region with parallel extinction. The arrows indicate the
50° twin boundary (which is parallel to the {110} plane of a pseudocubic cell) in (¢) and small
50° wedges in (c).

of another kind, which are able to take part in the capture phenomena. These are defects
increasing the ‘local temperature’ and defects of ‘local field’ type. The defects which often
generate a low-temperature phase are crystal edges but they can also be generated by TBs
5-7], dislocations [9], cracks [10] and so on. In this paper the PF which has jumped off
‘he crystal edge is considered.

Consider the interaction of a defect with a flat PF in the crystal which is supposed to have
‘he form of a right-angled parallelepiped, the PF being perpendicular to the Ox direction.

In the most general case the PT is described by the n-component order parameter (OP)
n(E=1,2,...,n).

The free energy has the form

F= f (%g D () + ¢(nz)) dV + Fim(§) (1)
i=]
vhere g > 0 is a constant and
o(ni) = (N1 N2y -0 M)

s the free energy density of the homogeneous crystal; ¢(0) = 0. V is the crystal volume
ind Fip (&) is the part of the free energy describing the interaction with the defect which
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“depends _on"the. ‘defect coordinate &. The method -for introducing the defect coordinate -
- depends on the nature of the defect. Several examples will be considered later. In the most
general case the interaction term can be written in the form

Fiot = [ > onfUix —€,y,pdxdydz. @
Vist- . _ _

Note that equation (2) is the most general form of the interaction of the OP and the defect
of an arbitrary nature. ¥ the defect is of the ‘local temperature’ type, in this case k = 2 and, if
the defect is of the ‘local field’ type conjugated to all or to some OP components, in this case

-k =1. In the general case this ‘local field’ acts-differently on the different OP components;
thus in a general case, U} % U 3% ... % [J,. Here the functions Uf;(x — &, v, z) describe
the interaction of the OP and the defect. They appear as the result of the OP interaction with
some other degrees of freedom which are not equal to zero in the vicinity of the defect (e.2.
the strain field, other OPs, and distribution of point defects). )

- Consider several éxamples of possible interaction of a defect and an o field.

The case of 2 PT in a crystal containing a wide coherent TB (domain wall) was considered
in [8]. ¥ was shown that the interaction term had the form '

P~ f nzcésh—zi(xﬁ.— £/ 1S dx

where lyp is the TB w1d’rh and S is the TB area. )

The narrow coherent TB model was considered to describe the nucleation on a TB during
a PT into a superconductmg phase [5] and during structural PTs [6,7]. In both cases the
interaction term is . )

' Fim;qu?a(x)de ’

where A is the TB power and 8(x) is the 8-function, This model can be obtained from the
first model in the case ltg < 1, _whefe r. is the OP correlation radius [5,8]. Note that in
both cases [5-8] at least two different Obs were considered in the theory directly or the
second OP was implied. The first OP is 7. It describes the low-temperature PT. The other OP
describes the high-temperature PT. If TBs appéar in the crystal under the high-temperature
FT, then the distribution of this OP is inhomogeneous [8]. The inhomogeneities in this OP
distribution describing the TB give rise to the inhomogeneous term in the free energy [8].

" Consider the case of an elastic defect (in other words the case of a defect which gives
rise to the inhomogeneous elastic field u; j (r), where u;;(r) is the strain tensor). In the case
of a PT with multiplication of the elementary cell (except improper ferroelastics) there. is
only one striction term and the interaction pait of the free energy should be written

n
Fua= A [ 2o runte — 3.9 dxdy e
i=l1 : 7 .

where A is the striction constant.

- In the case of improper ferroelastics (e.g. in the case of ferroelectrics) there can be
several mvanants of this kind in the free energy which are linear in #; ij(r) and of the second
order in 5 [11]. Thus Lhe case k=2 oceurs.
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Finally in the case of ferroelastics the interaction term is linear in both the OP and the
strain tensor (the case &k = 1).

The particular strain field distribution has different forms for defects of different kinds.

In the case of the edge dislocation stretched along Oz with the coordinates x = £,
y = 0, the trace of the strain tensor has the form

= [b(1 ~ 2v)/27(1 — V)][y/((x — £ + yD)]

where b is the 'Burge,rs vector and v is Poisson’s ratio [12, 13].
In the case of a flat crack lying in the x—y plane with its tip at the pointx =&, y =0
the trace of the strain tensor has the form

uy = Boos(p/2)/r'/? = B{l(x — & + Y T™V2 + [(x — §)® + YT}/
where -
B = 2K(1 — 2v)(1 +v)/2n)2E.

Here K is the stress intensity factor, E is Young’s modulus, and r and ¢ are the cylindrical
coordinates measured from the crack tip [10].

The incoherent TB is often considered as a wall of equidistant dislocations [13]. In the
case of a dislocation wall which is parallel to the y—z plane with the coordinate x = £ (the
dislocations being parallel to the Oz axes) the strain tensor frace takes the form

tey ~ exp(=2m|x — §|/ k) sin(2y/ k)

where £ is the distance between the dislocations [13].

These expressions should be substituted into Fi in order to calculate the interaction
energy for a defect of particular type. In the cases considered, the functions U; depend
on only two coordinates (in the geometry considered, they are x and y). However, a
dependence on three coordinates can also occur in the case of a more complicated defect.

These examples show some particular realizations of inhomogeneities giving rise to the
interaction term Fiy. However, in this paper the general properties of capture phenomena
are studied. They are independent of the specific structure of the defect.

The condition of the potential (1) minimum results in the equation of state

8@ ni /x> + 8n;/8y” + 8%ni /327y = dp/Bm; +hkn} ' Ui(x ~§,3,2)  (3)
and the boundary conditions on the crystal surface _
(n+V)n; =0 : : @)

where # is the normal unit vector and V is the gradlent operator
It is not difficult to see that the force f = —8F /£ acts in a general case from the oP
field to the defect:

Zfa”'U(x 5,7, 9 dxdydz. ®)

The solution describing the PF stopped at the defect has the asymptotics

(=00, 3,2 =700  7i(+00,5,2) =0 ©)
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which are the additional boundary conditions. Here nfo) are the solutions of the equations
of state 8¢/dn; =0 in the corresponding homogeneous phase 7 = constant # 0.

Nucleation on ‘local témpetature’ type of defects can take place at a higher temperature
than the PT temperature if the contribution of the last term in (1) is negative. As a result,
capture- phenomena can take place in the opposite case for f > 0. Suppose that the PF is .
flat (the PF bending in the defect field can be neglected for PTs of first order) and that the
op distribution has the form of a step 5 = n(x — &y); 3n/dx ~ n@8(x — &)/ lpr (where
& 1is the PF coordinate, and Ipg is the PF width); then one can obtain an estlmatlon for the

. condition for capture phenomena to occur:

Z(nfm)k [ Ui(‘?ﬂ - g! Y Z) dy dz = {),
=1 )

_Obviously, in the case of a perfect crystal (one obtains this case by taking U; = 0) the
- solution of equation (3) with the boundary conditions (4) and (6).exists- only at ‘the first-
order PT point, because the asymptotics 7;{—c0, ¥} =. r;,( and 5;(+c0, y) = 0 correspond
to. different values of the first integral of equation (3). The condition of equality of these
first integrals gives the equation of a line in the phase diagram which is the line of the
_ first-order PT. Thus a solution describing a motionless PF does not exist for a perfect crystal
away from first-order PT line. On the other hand in the two-phase region of the phase
diagram for the perfect crystal out of the first-order PT line a solution dcscnbmg the movmg
phase front exists. :
~ However, in the case of a crystal contalmng a defect the solution w:th the aSymptotlcs
(4) and (6) can exist in some region in the phase diagram. .
Equations (3) should be multiplied. by an;/dx, mtzgrated over x and y and summed
over i. Using the relations ‘

(3??:/335}(32?1:/322) = (3/32)[(371:/32)(3771/315)] - -(3/315)(371:/32)2

(3 /0x)(8%n:/3Y”) = (3/33!)[(311;/83?)(317:/316) — 3(8/3x)(@ni /0y)*
and ' o . '
 (3m: /%) (3mi/8x2) = L(3/0x) (9mi/ 3%

one can see that the left-hand part of the equation becomes zero after mtegratmn because
of the boundary conditions (4). Taking mto account that

Ly/2 o2 B O - |

L)) @fwz( —i;)lwmm Pi(-oNLLy = —0(r®)S
z = A

(where Ly and L; are the crystal sizes in the Oy and Oz du‘cctmns, and § =L,L, is the

crystal area of the.cross sectmn wh1ch is. perpcndlcular to the Ox dlrccnon) using (5) one
can ﬁnally obtair e . _ '

f==pa™s. “ff | "(n

(It should be noted that this Tesult is obtained for arbltrary U; functions. Thus it can be
applied to defects of all types mtcractmg w1th the op, for whlch the capture condmon is
fulfilled.)

The fulfilment of this condition is necessary but-is not sufficient, however, for the
existence of a solution of equations (3), (4) and (6). Thus it is necessary to show that such
~ a solution can be obtained exactly at least in the framework of a simple model. - ’
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4, The exact solution of a phase front stopped at 2 narrow coherent twin boundary

The exact solution is obtained here in the particular case of a simple model of a coherent
natrow T8. As is discussed above in the case of a narrow TB which is perpendicular to the
Ox direction, the functions U; can be taken in a form

Ui(x —Es J’»Z) = Aa(x _E)

being the same foralli =1,2,...,n
Consider the case of the first-order PT describing by a one-component OP 5. In this
case, n =1 and

o) = Len® + 10 + Lyn® | ()

where o, B and y are the phenomenological constants, with y > 0, 8 <0, ¢ = a(T — Tp)
(e > 0). ' ' '

The equilibrinm equation which follows from the minimum condition of the free energy
has the form ' :

2(3*n/8x%) = an + B’ + yn® + kA 18(x — &), @

The solution describing the PF stopped on the motionless TB must have the asymptotics
n(—oa) = ng, n{+00) = 0 and n’(Eo0) = 0 and must be continuous, but the derivative has
a jump at the point x = & because of the singular term in equation (9).

“The exact solution has the form

(10)

2 _ | 120/{(98* ~ 48ay)'” coshi2(e/g) H(x —£) + g1 +31B) x> &
[n3b? sinh®(¢ + p))/[nZ + b cosh?(¢ + p)] x <&

where

g =[-8 + (8% — 4ay)' /)2y
b7 =[B+2(8 — 4an)*1/2y
t = no[4(B% — dary) /281 (x - §).

The constants p and g should be determined from the conditions on the TB (see appendix).
These conditions give the system of the transcendental algebraic equations for p and ¢. It
is important to show that they have a solution in some region of the phase diagram. If the
existence of this solution is proved and the region of its existence is found, then it is the
phase diagram region where a capture phenomenon can take place. The p- and g-values in
this region can be found approximately.

The solution (10) can obviously exist only in the two-phase region of a phase diagram:
between the lines @ = B2/4y (figure 4, line 1) and the line & = 0. However, the solutions
for p and ¢ (appendix) exist in 2 smaller part of the phase diagram, which is displayed in
figure 4 on the background of the phase diagram of the potential (8). It is situated between
lines 3 and 4 (figure 4), given by the expressions

2/6Ay (218P) 2 = 2mofm + K | (11)
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%;[3

"Figure 4. The region of existence of the sclution {10) (shaded) on the background of the phase
diagram of the potentlal (8): line 1, the ling o = S2/4y, the two-phase region bomndary; line
2, the line o = 35%/16y, the first-order pr line; line 3, line given by (11); line 4, line given
by (12), the boundaries of the region of existence of the solution (10). (a) The solution (10),
describing the phase front, stopped at the T, .

'_’zfAy(giﬂF)*”z - K o w

respectively. Here X _=_(."2,m3 3m? + 1)1/2 and m = (1 —405)//,62)‘/2

Line 3 (figure 4) intersects the line o '= 0, the line @ = 3,62/ 16y (the line of the first-
order PT; figure 4, line 2) and the line o = ﬁ2/4y at the points 73, T and T3, respectively
(figure 4). The coordinates of these points are:

Bl =6ay?g  IBll=12a%"g || =244%"/g. (13)

Line 4 (figure 4) intersects line & =.0 at the point 7y and for B — —o00 coincides with
line 2. Thus a region m the. phase dlagram exists in which the solut:on (10) of equation (9)
Oceurs,

In the cases of other, more comphcawd models of TBS, One can hardly hope to obtain
the analytlc solution of equation of state describing the stopped PF, but the exact result
obtained in the framework of this sample model makes it posmble to expect that solutions
‘of the same type take pIacc in a general case. . - :

5. Joint moﬁon of the twin boundary and phase front

If the pressure o of the force f.(¢ = f/S) is more than o, (the maximum value of the
' pressure due to the interaction of a TB with lockmg devices or due to the Peierls force), the
TB can be moved by the PF '
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The dissipative function for the case of an n-component OP has the form

K i\
== — . 14
v zgf(az)dxdydz (14)
The equation of motion of the OP resulting from (1), (2) and (14) is

(@m/38) = g(8n:/0x7 + 8y /8y + 8 /320) — Bpfomy — kot WUix — §,3, ) (1)

where ¢ is the time and & = £(¢). The solution should be tried in the form n =
n(x — E(®), y, z). Substituting this expression into (15), multiplying by 8n;/8x, summing
over i and integrating over x, y and z as was done before, one can obtain the equation for

E(t): _
K J(38/88) = —p(n®) — (16)

for |p(n; 0))| — o, > 0. In the case T < T, one can obtain ¢(ng) < O and thus f > 0. (T is
the temperature of the first-order PT. In the case of the pT described by the potential (8) the
PT takes place on the line o = 382/16y of the phase diagram; thus Tp = T, + 38%/16ya.)

Here :
e Z f ” ("’_")2 @ an
= e \ O '

i=l

and the value of the integral J can be estimated as J ~ Z(n,.w))zj lpg.

Note that the results (7) and (16) are universal; they do not depend on the concrete
mechanism of the interaction of TB and the OP and on the structure of the free energy (1)
(the polynomial (8) power, the number of components for the OP and so on). However, the
form of the exact solution (10) of the equation of state (9) and the region of existence of
this solution are determined by the potential structure (1) and (8).

The maximum value of the pressure ¢ can be obtained on the edge of the two-phase
region of the phase diagram. In the case of the transition described by the potential (1) and
(8) it occurs at & = 0; hence it follows that omex = |B1 /122

At o < 0 the solution (10) does not exist. Thus for supercooling & < 0, the PF is torn
off the TB and the whole crystal becomes a low-symmetry phase.

The condition Iqa(n,fm)l = |p(T1}| = o, gives the temperature T} at which the PF tears
the T8 off the locking devices. At the small value T — T3 < 0 the velocity of the joint
movement of the PF and the TB has the form

8 /8t = s(Ty — T)/kJ . _ , (18)

where the transition entropy density s = —d¢/37. In the case described by the potential
(8), 5 = an}/2.

The values of the constants of the potentials which describe the transitions in NaNbO;
and PbHfOs are unknown. However, one can estimate the values of o and 3%/t using the
experimental data for some ferroelectrics [14]. One can obtain oyay ~ 10°-~10* Pa [14].
Using the values a ~ 10° Tms C2 K= (14], I ~ 1070 m, ¢ ~ 1051076 T m s C~2
(which corresponds to a relaxation time of about 10~'°-10"!! ), one can obtain s/kJ ~
i-10m s~ K-1.
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7 Appendix. The so]uljbn of equation (9) |
Aftdr the trénsfonnatio'n's o | R :
. z(gy)‘“/lm S a= uBZ/a? n= e(z)(lbl/yi‘f2 a
equatlon ()] for the case k = 1 is. reduced to the form |
| 30 /87> =_u9—93+'6'5+'D3(z) B B (Ai)r ,
Wliere D = Ay(g|pP )“‘”Zl The solution of equation (Al)- must be cdntinuous with a jump

- of 6(0). Integrating equation (Al) over z from —e¢ to € and takmg the hm1t € = 0, one
can obtain the conditions which must be fulfilled at the point z = O -

PG -0 =D. . (A2)
The COntinuity condition has -dde foﬁn )
O(+0) =B(~0). | S o (A3)
'I;hc expfession for thé force f ,_obtai.néd with thc hdlp of (5), is
SOl = £ b

Equations (A1)~(A4) together with equation (7) for the force are the complete system
which makes it possible to obtain the solution with the asymptotics (4) and (6). Equation
(A1) is conservative everywhere except for at the point z = 0. Thus the first integrals exist;
" one of them is equal to zero and corresponds to the first expression in equation (10), and
the second, which is equal to —@(8), corresponds to the second expression in equation
(10). Here ¢() = | ;831(9(9)/)/2 These two expressions must satlsfy equations (A2)-(A4)
, and (7) at the pomt z= O They can be reduced to

o0 = 36/D + ip

oY (A5)
8'(—0) = @(6o)/ D ~ 3 D
where 83 = [ + (1 ~-4u)'/?]. Equation (A5) is the system of transcendental equations
. which makes it possible to-obtain the values of the constants p and g for the solution (10).
.The left-hand parts of both equanons (AS5) are Inmted thus the condition of existence of
the solutlon of (A5) for p and g is : ,

I[B'(:tO)llmux 90(90)/ D+3D. : (A6}
The inequalities (A6) give the region -of existence of the solution (10) in the phase diagram.

The boundaries of this region are given by (11) and (12}, In this region the solution exists
and the values of p and g can be obtained approximately.
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